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Abstract

Characteristic curve approaches to linking parameters from the generalized partial credit model

(GPCM) are examined for cases where common (anchor) items are calibrated separately in two

groups. Three of these approaches are simple extensions of the test characteristic curve (TCC),

item characteristic curve (ICC), and operating characteristic curve (OCC) methods that have been

previously developed for other binary item response models. The ICC approach explicitly

provides a symmetric solution for estimating linking constants whereas the TCC and OCC

approaches yield an asymmetric solution. Thus, the symmetry of the result is confounded with the

type of characteristic curve used to derive the result. New characteristic curve techniques are

developed to eliminate this confound. Specifically, symmetric versions of the TCC and OCC

methods are developed within the context of the GPCM along with an asymmetric version of the

ICC technique. The accuracy of linking constant estimates and the accuracy of rescaled GPCM

parameter estimates obtained with each method is examined in a simulation study. The study

suggested that the TCC method yields slightly more accurate estimates of linking constants and

model parameters as do symmetric, as opposed to asymmetric, solutions. The study suggests that

all of the methods yield similar linking results when GPCM parameters are estimated accurately

using large samples.
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Alternative Characteristic Curve Approaches to Linking 3

Exploring Alternative Characteristic Curve Approaches to Linking Parameter Estimates from the

Generalized Partial Credit Model

Parametric item response theory (IRT) models generally yield parameter estimates that are

identifiable up to some arbitrary change in location (i.e., origin), and perhaps an arbitrary change

in scale (i.e., unit) when the model contains a discrimination parameter. Constraints must be

introduced to achieve a unique solution when estimating parameters in these models. These

constraints, in turn, yield parameter estimates that have a data dependent metric. To overcome

this dependency, parameter estimates are typically transformed to achieve a common metric

before comparing estimates from different calibrations. We refer to this transformation process as

"linking" parameter estimates.

There have been several methods proposed to link parameter estimates using common

(anchor) items from alternative calibrations of a given parametric IRT model (Kolen & Brennan,

1995). Linking methods based on characteristic curve approaches are generally thought to be

reasonably accurate and more robust to outliers as compared to methods based simply on

summary measures of parameter estimate distributions (Baker & Al-Karni, 1991; Stocking &

Lord, 1983). Moreover, characteristic curve methods only require access to the IRT parameter

estimates themselves, and not to the estimated item parameter covariances or to the raw item

response data. Therefore, this paper will focus on characteristic curve approaches to linking IRT

parameter estimates.

To date, there have been three distinct characteristic curve approaches developed in the IRT

literature. These are the test characteristic curve (TCC) method (Stocking & Lord, 1983), the
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item characteristic curve (ICC) method (Haebara, 1980), and the option characteristic curve

method (Baker, 1993). The first two of these methods were proposed in the context of binary

logistic models whereas the latter was developed in the context of the nominal response model

(Bock, 1972). This paper will focus on extending each of these methods to Muraki's (1992)

generalized partial credit model (GPCM). The GPCM is defined in the gth calibration group as:

exp (0 b + dco v)
v=1

P(g) Ow./ a(g)t' d(g)1)
exp awl (0(g)j. + ci(g)i

c=1 v=1

where:

P(MI k is the operating characteristic function for the kth category of the ith item in the gth
calibration group,

Ocof is the location of the jth individual from the gth calibration group on the latent continuum,

a is the discrimination parameter for the ith item from the gth calibration group,

b is the location of the ith item from the gth calibration group

d
(g)i

is the vector of K, threshold parameters for the ith item in the gth calibration group which
are constrained to sum to zero, and

K, is the number of response categories for the ith item.

The GPCM is interesting in that all three characteristic curve approaches can be used to link

parameter estimates that are derived from it. However, there has not been a systematic

comparison of these alternative characteristic curve linking methods. This paper will, among

other things, report on such a comparison.

The TCC, ICC, and OCC linking methods differ from each other with regard to symmetric or

5



Alternative Characteristic Curve Approaches to Linking 5

asymmetric nature of their solutions. All of these methods attempt to derive linking constants that

are used to transform parameter estimates from one calibration group (i.e., the transformed

group) to the metric of estimates from the other group (i.e., the target group). The TCC and

OCC methods yield linking constants that are dependent on which set of estimates constitute the

target metric. If these methods are used to obtain two solutions in which the target calibration

group is reversed, then the two results will not be simple inverses of each other. We refer to these

types of solutions as asymmetric. In contrast, the ICC method yields a symmetric solution. If the

ICC method is applied twice such that the roles of the target and transformation groups are

reversed across the two applications, then the resulting solutions will be simple inverses of each

other. As mentioned above, the past literature on characteristic curve approaches to linking IRT

parameter estimates has confounded the notion of solution symmetry with the type of

characteristic curve use to derive linking constants. This has important implications for

measurement practice because the choice between a symmetric or asymmetric linking solution

should be based on the measurement situation and not on the characteristic curve that one wishes

to use. For example, studies of IRT parameter invariance generally estimate parameters

separately in two groups, link the estimates to achieve a common metric, and then compare the

linked parameter estimates. The selection of a target calibration group is arbitrary in such cases,

and therefore, a characteristic curve approach to linking that is symmetric would be preferred.

Alternatively, in situations where new test items are calibrated and subsequently added to a pre-

existing item bank in which the metric is fixed, the new estimates must first be linked to the metric

of items in the bank. In this case, there is a pre-existing target metric, and an asymmetric solution

is justified. Unfortunately, the previous confound between the type of characteristic curve used to

6
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develop linking constants and the symmetric or asymmetric nature of the solution limits the

practitioner's ability to choose the method that is most appropriate for a given measurement

situation.

In order to more easily choose among characteristic curve methods of linking IRT parameter

estimates, the symmetry of a solution must be disentangled from the type of characteristic curve

used to derive the solution. Accordingly, a second objective of this paper was to overcome the

confound between these two features. We did this by developing symmetric versions of the TCC

and OCC procedures and an asymmetric version of the ICC procedure. These developments are

described below along with a description of the original TCC, ICC and OCC methods.

The Test Characteristic Curve (TCC) Method

Stocking and Lord (1983) proposed a TCC approach in which the scale and location of

parameters from one calibration are linearly transformed to match the metric of parameter

estimates from a second calibration based on a subset of common items (i.e., anchor items). The

transformation minimized the sum of squared differences between the test characteristic curves

associated with common items from the two sets of parameter estimates. Originally proposed for

a 3-parameter logistic model for binary responses, the TCC method can be generalized easily to

the GPCM. Let 0(2)12 denote the location of the j2th individual from the second calibration group

on the latent continuum, and let 0(21)j2 represent the location of the j2th individual from the second

calibration group after it has been transformed to the metric of the first calibration group.

Similarly, let b(2)
r

refer to the location of the ith item from the second calibration, and let b(21)

represent the location of the ith item from the second calibration after it has been transformed to

the metric of the first calibration group. The item discrimination parameter (am/ and a(201) and

7
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the threshold parameter ( d(2) and d(21)1k) are subscripted in an analogous fashion. The TCC

procedure estimates the linking constants, A and B, that transform the metric of parameter

estimates from the second calibration group to that of the first as follows:

0(21)12 =A 0(2)12 +B

= A b(2), + Bb(21)1

d(21) ik = A d(2) ik

a(2)1a(21)1 A

The "scale" constant A and the "location" constant B are found by minimizing the squared

differences between the test characteristic curves associated with anchor items from the first

and second calibration groups after transforming person parameters. Let :

E
K

TCC(2)j# = k [13(2)i k (0(2) , b(2) am, , 11(2)1 )
1=1 k=1

K

TCC(21) j* = k [ P(21) k (° (21)f* b(1) amt d(1),
r=1 k=1

where: I is the number of anchor items,

Ki is the number of response categories for the ith item,

j* refers to some preselected evaluation points on the 0 continuum,

P(2) ik is the operating characteristic function for common items in the second calibration

8
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group, and

P(21) ik
is the operating characteristic function for common items in the first calibration

group using an evaluation point on the latent continuum that has been transformed from

the metric of the second calibration group to that for the first calibration group.

TCC(2) j*
is the value of the test characteristic curve at point j* for common items from the

second calibration. TCC(21) j* is the value of the test characteristic curve at point j* for common

items from the first calibration after the metric of the latent continuum is transformed so that the

curve closely matches TCC(2)1* as closely as possible. The TCC method attempts to find the

values of the scale constant (A) and location constant (B) that minimize the following squared

loss function:

n CCV(2T) = E [ Tcc(2,1, Tcc(21)1, 2

1*

In other words, the method attempts to linearly transform the metric of parameters in the second

calibration group so that the TCC for anchor items matches the corresponding TCC in the first

calibration group as closely as possible. In this study, Quo minimized with respect to A and

B using a Newton-Raphson technique. This minimization technique requires the partial

derivatives of Q(
TCC
21) The necessary derivatives and a description of our implementation of the

Newton-Raphson algorithm are given in a technical report available from the authors (Roberts,

Huang & Gagne, 2003).

The reader should note that the TCC method described above does not yield a symmetric

solution for A and B. If one switches the roles of the first and second calibration groups in the

above equations and recalculates the estimates of A and B, then the new solution will not

9



Alternative Characteristic Curve Approaches to Linking 9

generally be the inverse of the original solution. Thus, the TCC method provides an asymmetric

solution. It is also important to note that Stocking and Lord (1983) did not explicitly define what

CC
evaluation points (i.e j* ) should be used to minimize Q(21

.
In practice, a small number of

equally-spaced points (e.g., 21) ranging from -4 to +4 are often used (Baker, 1995).

A symmetric version of the TCC method can be developed for the GPCM in a straightforward

manner. Relying on Haebara's approach to forming a symmetric quadratic loss function in the

item characteristic curve method (see below), we can define the following additional relationships:

00(1)i, B

(12)./.1 A

In Equation 9, the term 0(0j.irefers to the location of the jIth individual from the first calibration

group on the latent continuum. In contrast, denotes the location of the j1th individual from

the first calibration group on the latent continuum after transforming it to match the metric of the

second calibration group. We can further define the following two TCCs:

TCC
UV*

= E k [ P k(13 wit , bop , aup , d .)]
(1)i=1 k=1

TCC(12) is

K

L k [ P(12) t k (e (12)J* b(2); (2) ) I
1=1 k=1

TCC(Op is the test characteristic curve at point j* for common items in the first calibration

group, whereas TCC(12)./.* is the test characteristic curve at point j* for common items in the

second calibration group after the metric of the latent continuum is rescaled so that the curve

10
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matches TCC(01, as closely as possible. The degree of matching can be quantified with the

following squared loss function:

207
TCC(1)1* TCC

(12)i*
2

1*

With these definitions in place, we can develop the following symmetric loss function:

2 TCC n TCC r, TCC
Q(12) V(21)

The values of the scale constant, A, and the location constant, B, which minimize this function

are found using a Newton-Raphson technique. The necessary derivatives are given in Roberts et

al. (2003). Note that because this function minimizes differences between test characteristic

curves twice - first by rescaling the metric of the curve in the second calibration group and then by

rescaling the metric of the curve in the first group - it consequently yields a symmetric solution for

the linking constants.

The Item Characteristic Curve Method

Haebara (1980) proposed an alternative characteristic curve approach in which the linking

constants, A and B, are found that minimize the sum of squared differences between item

characteristic curves (ICC) associated with common items across two calibration groups.

Haebara's approach was also distinct from Stocking and Lord's (1983) method in that it produced

a symmetric solution. The ICC method was originally proposed for a 3-parameter logistic model

for binary responses, but it can be extended to the GPCM in a straightforward manner. In order

to illustrate the squared loss function for the generalized ICC method, let us define the following

functions:

11
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vhK

ICC(1)1J. k [P(1)1 k (0 (1)p, b(1) 1 a(1)/ 5 d(1) )1
k=1

4c_4,

ICC(12)111 = k[ P(12) r k (0 (12)1 , b a(2)1 (2). 1 5
d (2) I

)
k=1

..jK

/CC(2) i = 2.; k[ P(2) k (0 mil, bmt , a(2) , d (2)1)
k=1

ICC(200.1 k[ P(21)1 k (0 poi b0 a d) 3 (1)1 (oi )]
k=1

(14)

(15)

/CC(ni.* is the value of the item characteristic curve at point j* for the ith common item in

the first calibration group. /CC(2)0./ is the value of the item characteristic curve at point j' for the

ith common item in the second calibration group. ICC(12)1J. is the value of the item characteristic

curve at point j* for the ith common item in the second calibration group after the metric of the

latent continuum is transformed to match the metric of the first calibration group. Conversely,

/CC(201i, is the item characteristic curve for the ith common item at point j' in the first

calibration group after the metric of the latent continuum is transformed to match the metric of

the second calibration group. The squared loss function in Haebara's ICC method can then be

written as:

12
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Qic, = E vcc(,)11, Kr(),./.. )2
1=1 j*

[ICC ICC
V(12) i V(21)1

1=1

E VCCMU/ ICC(21) tj 21

1

The values of the scale constant, A, and location constant, B, that minimize Olcc are found using

a Newton-Raphson technique. The derivatives required to perform this minimization are

given in Roberts et al. (2003). If the roles of the first and second calibration groups are reversed

in Equation 18, then the resulting solution is the inverse of the original solution, and thus,

Haebara's solution is symmetric. Haebara originally suggested the evaluation points, j* and j', be

based on the distributions of estimated 0 values in the first and second calibration groups,

respectively. However, any reasonable set of evaluation points could be used, and in the

remaining part of this paper, we simply define j* =1

An asymmetric solution can easily be developed for the ICC method by simply minimizing

/cc /cceither the Q(12)i or the Q(21)1 term from Equation 18 with respect to A and B. To
1=1

maintain comparability with the definition of the asymmetric solution in the TCC method, we

chose to minimize the latter term:

Q2Icic 2, (ICC ICC , )21 =
n ICC

(2) (21) ij V(21) i
i =1 j/ i = 1

Operating Characteristic Curve Method

Baker (1993) developed an operating characteristic curve (OCC) method to link IRT

parameter estimates. He originally proposed the method for the nominal model where calculation

13
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of an ICC or TCC need not be applicable. However, Baker noted that the technique is equally

appropriate in the case of graded polytomous responses such as those modeled in the GPCM.

Let:

OCC(2)1 = P(2) k 0(2)j b(2)1, a(2)1, ) , and (20)

OCC )1 K = P(21)1 k (21)j* b(1) a(l)t, 4(1)1) (21)

The OCC method finds the scale and location constants, A and B, that minimized the following

squared loss function:

1.1 OCC
V(21) = E OCC(21) /cf.] 2

1=1 k=1
(22)

The solution to this minimization problem can be solved using the Newton-Raphson algorithm

using the derivatives given in Roberts et al. (2003). Baker (1995) has suggested that a limited

number of evaluation points (25 or less) that are equally spaced between 0 + 4 can be used to

evaluate differences between the OCCs in the two calibration groups.

The OCC method as originally proposed by Baker (1993) is obviously asymmetric. However,

a symmetric version , can be easily developed if we let:

OCC = P k (0(1)j* , b(1)1, a(1)1, d(1) ) (23)

14
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OCC(12) i kj* = P(12)1 k (0(12) j* b(2) a(2)/ d(2) ) and

Q(`)c)c = E E [OCC(1)1kj* OCC(12)i kjd
2

1=1 k=1

With these definitions in place, a squared loss function can be developed to yield a symmetric

solution:

Q OCC E [OCC(1) kj OCC(12) i kid 2 + [ OCC(2)1 kj* OCC(21) i kjd2
i=1 k=1

OCC n OCC
= V(12) + V(21)

(24)

(25)

(26)

Again, this function is minimized with respect to the linking constants, A and B using standard

techniques like the Newton-Raphson method. The derivatives of the loss function required to

implement the method are given in Roberts et al. (2003).

Simulation Study

A simulation study was performed to examine and compare the behavior of each of the six

aforementioned linking methods. In this study, item responses from two independent groups of

simulees were generated for the same 20-item test form. These responses were generated to

conform with the GPCM and were subsequently used to estimate GPCM parameters separately in

each of the two groups. The parameter estimates from the two groups were linked using each of

15
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the six linking methods. Linking was based on either the entire set of common test items or on

randomly chosen subsets. The nature of the evaluation points chosen to compare characteristic

curves was also varied. Each aspect of the simulation is described in detail below.

Method

Item Characteristics

Item parameter estimates from the GPCM published in the 1998 NAEP technical report

(Allen, Donoghue & Schoeps, 2001) served as the true item parameters in the simulation. Only

the 162 NAEP items with three response categories were used in an effort to simplify the

experimental design. Of these initial items, only the 153 items with I b. <2 were maintained in the

item pool. Elimination of items with more extreme locations was done in an effort to assure that

each response category would be used at least once for every item. On a given replication, 20

items were randomly sampled from the item pool. Responses to these items were simulated

independently in the two groups, and then the sampled items were returned to the pool for

subsequent resampling.

Sample Size and Simulee Characteristics

In a given experimental condition, either 300 or 2000 respondents were simulated in each of

the respondent groups. The true 6 values for these simulees were derived in one of two different

ways. In one condition, true 0 values were generated from a N(0,1) distribution in both

respondent groups. In the other condition, the true 0 values were generated from a N(0,1)

distribution for the first group, and a N(.5, 1.252) distribution for the second group. Given the

lack of standard terminology , we will refer to the first condition as a horizontal linking scenario,

whereas the second condition will be referred to as the vertical linking scenario. True 0 values

16
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were independently generated on every replication within each condition.

Calculation of Model Parameter Estimates

Parameter estimates were derived from simulated item responses using the PARSCALE

computer program (Version 3.2; Muraki & Bock, 1997). A marginal maximum a posteriori

estimation algorithm was used to derive item parameter estimates. The algorithm utilized a

N(0,1) prior distribution for 0 a log-normal(0,.52) prior distribution for slopes, and a N(0,22)

prior for item locations. Thirty equally-spaced quadrature points between -4 and +4 were used to

obtain a solution along with a convergence criterion in which the largest absolute change for any

item parameter estimates was less than .001 from one iteration to the next.

After obtaining solutions for item parameters, expected a posteriori (EAP) estimates of 0

were obtained for each simulee. These estimates were calculated using 30 equally spaced

quadrature points between -4 and +4 along with a N(0,1) prior distribution.

Linking Parameter Estimates

The parameter estimates for the two calibration groups were linked using both the symmetric

and asymmetric forms of the TCC, ICC and OCC methods. Furthermore, each of these methods

was implemented using either 5, 10, 15 or 20 common items. The common items used in the

linking procedure were randomly selected at the beginning of each replication. However, items

were added to the set of common items in blocks of 5 items so that, within a given replication,

the larger sets of common items contained the smaller sets. (In other words, 5 items were added

to the original set of 5 common items to produce a set of 10 common items, and so on.)

Differences between characteristic curves were evaluated at points on the latent continuum

defined by one of three strategies. Curves were contrasted at 50 equally spaced points between

17
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=(-4, +4), at 2*N equally spaced points between 0 =(-4, +4), or at the 2*N values of 0 that

were estimated in the two corresponding calibration groups.

Experimental Design

The simulation conditions were structured as a 2 (sample size) x 2 (linking scenario) x 3

(characteristic curve type) x 2 (solution symmetry) x 3 (evaluation points) x 4 (anchor items)

split-plot factorial design. The first two of these factors comprised the between-replication

conditions, whereas the last four factors were within-replication conditions. There were 100

replications in each between-replication condition. On a given replication, the true item

parameters were randomly sampled from the item pool, item responses were generated in each of

the two independent groups, GPCM estimates were calculated separately in the two groups, and

the parameter estimates were repeatedly linked using the 72 different procedures defined by the

within-replication factors.

Data Analyses

Primary and secondary data analyses were performed to assess the accuracy of linking under

the conditions that were explored. In the primary analyses, the squared error of the estimated

scale constant, (A A)2 , and that for the estimated location constant (E' B) 2 were analyzed

using a univariate split-plot ANOVA. Consequently, the hypotheses tested by these ANOVA

models were framed in terms of mean squared error (MSE). The nominal Type I error rate was

set to .025 when testing each ANOVA effect due to the fact that two dependent measures were

studied. The probability of each within-replication effect under the null hypothesis was adjusted

using the Hyunh-Feldt (1970) procedure. Each effect in the ANOVA model, was a classified into

one of 16 effect families. An effect family included all the effects tested by a given error term

18



Alternative Characteristic Curve Approaches to Linking 18

along with the error term itself. The proportion of familywise variance associated with each effect

was calculated. This is referred to as the ri2wF. In order to limit the interpretation of trivial

effects, only those effects that were both statistically significant and associated with n2wp. > .03

were interpreted in this paper.

The secondary data analyses explored the squared deviation of GPCM parameter estimates

from their true values using ANOVA techniques. Thus, the hypotheses for each ANOVA effect

was framed in terms of mean squared deviations (MSD). There were two basic types of ANOVA

models constructed to examine MSD. First, the squared error of GPCM parameter estimates

(i.e., S, d, a, and ®) for the first calibration group was modeled as a function of sample size,

linking scenario and their interaction. A second ANOVA model was used to investigate the

squared error of parameter estimates from the second calibration group after they were resealed

to the metric of the first calibration group. These squared errors were examined using an

ANOVA model which included all the between-replication and within-replication effects in the

experimental design. The Type I error rate for the secondary data analyses was set to .0125

because there were four dependent measures examined in each type of ANOVA model. As in the

primary analyses, probability values for within-replication effects were adjusted using the Huynh-

Feldt procedure. Given that the total number of effects tested in these secondary analyses was

substantially larger than that for the primary analyses, the effect size criterion for interpretation

was increased to ri2wF > .05. Thus, only those effects that were statistically significant and had

2corresponding n w > .05 were ultimately interpreted.

Primary Analyses

Results

19
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Table 1 lists the ANOVA effects for the MSE of A that were deemed to be interpretable on

the basis of the previously defined operational criteria. Of these interpretable effects, some were

main effects that were subsumed under higher order interactions. Only the higher order effects

will be described in this paper. The MSE for A was partially a function of a two-way interaction

between the number of anchor items used to estimate linking constants and the sample size used

to calibrate GPCM parameters. The form of this interaction is shown in the top panel of Figure 1.

When parameter estimates were calibrated using large samples (N=2000), the MSE for A was

minimal, and the number of anchor items had little effect on the MSE values. However, when the

calibration sample size was small (N=300), then the MSE for A increased noticeably; and this

increase was inversely related to the number of anchor items used in the linking solution. The

mean differences associated with this interaction were quite small and were confined to the third

decimal place. However, these differences were not considered to be ignorable. For example, the

difference between the root of the MSE incurred in the two sample size conditions with 5 anchor

items was equal to .058, and this represented 5.8% of the true 0 standard deviation. For the 20

anchor item condition, the difference in root MSE decreased to .032.

Insert Table 1 About Here

Insert Figure 1 About Here

The interaction between linking scenario and calibration sample size was also classified as

interpretable. This interaction is illustrated in the bottom panel of Figure 1. With a large

calibration sample size, the MSE of A was quite small, and the linking scenario (i.e., horizontal or



Alternative Characteristic Curve Approaches to Linking 20

vertical linking) had virtually no effect on its magnitude. In contrast, when the calibration sample

size was small, the MSE of A increased for both linking scenarios, but this increase was larger in

the vertical linking condition. Again, this effect was small, but not ignorable. The difference in

root MSE values for A in the vertical linking condition was approximately .05 which was equal to

5% of the standard deviation of true 0 values, whereas the difference in root MSE for the

horizontal linking condition was equal to .032.

There was also a three-way interaction between type of characteristic curve utilized, the

symmetry of the solution, and calibration sample size. This interaction is displayed in Figure 2.

The MSE for A was trivial and showed little sensitivity to the type of characteristic curve or the

symmetry of the solution when a large calibration sample size was used. However, when a small

calibration sample size was used, then the MSE for A increased, and a small interaction between

the type of characteristic curve used and the symmetry of the solution emerged. The TCC

approach produced the smallest amount of error, followed by the ICC and OCC methods,

respectively. With the latter two methods, there appeared to be a small effect of symmetry such

that a symmetric solution produced a slightly smaller MSE for A as compared to an asymmetric

solution. The tiny magnitude of this interaction was corroborated by its sum of squares which

was nearly zero. (As shown in Table 1, the sum of squares for this interaction rounded to zero at

the third decimal place.) Given its very small magnitude, this interaction is probably of little

practical importance.

Insert Figure 2 About Here

Table 2 lists the ANOVA effects corresponding to the MSE for B that were deemed to be
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interpretable. As was the case for A, the MSE for B was a function of the two-way interaction

between the number of anchor items used in the linking solution and the sample size used to

calibrate GPCM parameter estimates. The means corresponding to this interaction are shown in

the top panel of Figure 3. The pattern of means is quite similar to that found with the MSE for

A, and suggested that the MSE 13 was trivial in magnitude and insensitive to the number of

anchor items used in the linking solution when the calibration sample size was large. With a small

calibration sample size, the MSE for h increased, but the accuracy of E. improved as the number

of anchor items grew larger. The difference in the root MSE for 13 between the sample size

conditions was equal to .037 when the number of anchor items was equal to 5. This difference

decreased to .022 when the number of anchor items was 20.

Insert Table 2 About Here

Insert Figure 3 About Here

The bottom panel of Figure 3 illustrates another two-way interaction in which the MSE for h

was a function of the type of characteristic curve used in the solution and the nature of the

evaluation points used to contrast characteristic curves. When either 50 or 2N equally spaced

evaluation points were used, then the TCC method produced slightly more accurate estimates of

B relative to the ICC and OCC methods. The latter two methods produced similar MSE values.

In contrast, when the characteristic curves were evaluated at the 2N points associated with 0,

then all the characteristic curve methods yielded similar MSE values and these values were slightly

smaller than those in other evaluation point conditions. Although this effect was interesting, it
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was so small that it would have few, if any, pragmatic consequences.

Secondary Analyses

Group 1 Analyses. The two-way ANOVA on the squared difference of GPCM parameters for

Group 1 revealed intuitive results. The main effect of calibration sample size on MSD led tor)

values equal to .63, .65 and .52 for estimates of S, a , and ci, respectively. These sample size

effects were all statistically significant at the p<.0001 level and all were in the predicted direction;

larger sample sizes led to smaller MSDs (.003 versus .017 for S, .004 versus .021 for a, and .007

versus .043 for c2). These differences were very small in the metric of MSD. However, when

differences were expressed in terms of root MSD, they appeared more substantial ( .052 versus

.131 for S, .059 versus .144 for a, and .083 versus .208 for ci). Moreover, when these

differences were interpreted in the light of the root pooled variance of true item parameters within

replications (.659 for S, .293 for a, and .937 for they seem more substantial. Specifically, the

differences in root MSD represented 11.99%, 29.01%, 13.34% of the root pooled within-

replication variance of true b, a, d parameters, respectively.

The MSD for 0 in Group 1 was not statistically related to calibration sample size, linking

scenario or their interaction. This was expected because the number of responses to informative

items determines the accuracy of an EAP estimate, and the 0 were calculated from 20 item

responses in all conditions. Additionally, the 0 values for Group 1 were not rescaled via the

linking constants, and therefore, one would not necessarily expect their accuracy to be dependent

on the linking scenario if the test provided ample information across the latent continuum.

Group 2 Analyses. The ANOVA on the squared difference for rescaled GPCM item

parameter estimates from Group 2 revealed several interesting findings. Table 3 lists the effects
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that were deemed to be interpretable. With regard to the MSD for 5, there was a two-way

interaction between calibration sample size and the number of anchor items used to solve for

linking coefficients. This interaction is depicted in the upper panel of Figure 4. As shown in the

figure, when the calibration sample size was large, the MSD for S was minimal and insensitive to

the number of anchor items used to solve for linking constants. In contrast, when the calibration

sample size was small, the MSD for S increased, and slight reductions in MSD emerged as the

number of anchor items increased. The difference in root MSD for S between the two sample

size conditions was equal to .084 when linking was based on 5 anchor items, and it decreased to

.072 when 20 anchor items were used. These differences represented 12.7% and 11.0% of the

root pooled variance of true b values within replications. Thus, the increase in MSD due to small

calibration sample size was mitigated very slightly by an increase in anchor items. It is also

important to note that the MSD for S in the small calibration condition decreased very little after

the number of anchor items reached 15.

Insert Table 3 About Here

Insert Figure 4 About Here

The ANOVA for the MSD of S also revealed an interpretable interaction between the nature

of evaluation points and the number of anchor items used in the linking solution. This effect is

illustrated in the bottom panel of Figure 3. The interaction suggested that using estimated theta

values from both calibration groups as points to evaluate characteristic curve differences was

slightly preferable when a small number anchor items was employed. However with 15 or more
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anchor items, using theta estimates as evaluation points produced slightly higher MSD values for

S. Although this interaction met the criteria for interpreting an effect, the corresponding mean

differences were negligible as suggested by the nearly zero sum of squares for this effect as shown

in Table 3.

Insert Figure 5 About Here

A three-way interaction of the characteristic curve, the symmetry, and the evaluation points

inherent in a given solution also emerge when evaluating MSD for S. The interaction is

portrayed in Figure 5. When equally spaced evaluation points were used, then the symmetric or

asymmetric nature of the solution had little effect on the MSD for lb unless an ICC method was

used. In this case, an asymmetric solution seemed slightly more preferable. However, a

symmetric solution led to slightly smaller MSD for the ICC and OCC methods when A values

served as evaluation points. The symmetry of a solution had little impact of the MSD for S when

the TCC method was used, regardless of the nature of evaluation points. Given the very small

size of these mean differences and the small sum of squares associated with the interaction, it is

doubtful that this finding will have any pragmatic consequences for practitioners.

With regard to the MSD for a, there were two ANOVA effects that met the criteria for

interpretation. The first of these was a two-way interaction between calibration sample size and

number of anchor items which is shown in Figure 6. As was the case with S, the MSD for a was

negligible when the calibration sample size was large, regardless of the number of anchor items

used in the linking solution. However, for small calibration samples, the MSD fora was

noticeably larger, and it decreased very slightly as the number of anchor items increased. These
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decreases in MSD attenuated when the number of anchor items was 15 or more. The difference

in root MSD for a between the two sample size conditions was equal to .096 when linking was

based on 5 anchor items. The difference decreased to .081 when 20 items were used in the

linking procedure. These values represented 32.9% and 27.6% of the root pooled variation in

true a values within replications. Thus, the noticeable ill effects of a small calibration sample size

were mitigated slightly by an increase in the number of anchor items used in the linking solution.

Insert Figures 6 and 7 About Here

The MSD for a was also dependent on a three-way interaction between the calibration sample

size, the type of characteristic curve employed, and the symmetric nature the solution. This

interaction is shown in Figure 7. With large calibration samples, the MSD for a was quite small,

and the remaining two factors had virtually no impact on its value. With small calibration

samples, the MSD for a increased noticeably. Additionally, there was a very slight advantage for

the symmetric solution when using either an ICC or OCC method, as opposed to the TCC

method. However, the size of this simple interaction effect was extremely small and is probably

of no practical importance.

The MSD for d was primarily a function of the calibration sample size and the number of

anchor items used to solve for linking constants. Both of these main effects are displayed in

Figure 8. As shown in the top panel of the figure, the large calibration sample led to an MSD for

that was .032 smaller than that in the small calibration sample condition. The difference in the

corresponding root MSD values was equal to .115 and represented 12.2% of the root pooled

variation in true d parameters within replications. Therefore, this effect was considered to be
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Insert Figure 8 About Here

The bottom panel of Figure 8, illustrates the main effect of the number of anchor items in the

linking solution on the MSD for a. The MSD decreased as the number of anchor items

increased, although the size of the decrease diminished once the number of anchor items had

reached 15 or more. The MSD for d decreased by .002 when the number of anchor items

increased from 5 to 10. The corresponding difference in root MSD values was also quite small

(.006), and thus, this effect was thought to have little, if any, practical implications.

With regard to the MSD for rescaled 0 values from Group 2, there were several interpretable

effects that emerged from the ANOVA, and each of these is listed in Table 4. The strongest

effect was the main effect of linking scenario. The MSD for rescaled 0 values was larger in the

vertical linking scenario (.144) relative to the horizontal linking condition (.128). When

transformed into root MSD, the magnitude of this difference was small and represented 2.2% of

the standard deviation of true 0 .

Insert Table 4 About Here

Insert Figure 9 About Here

The MSD for 0 was also dependent on the type of characteristic curved used to estimate

linking constants. As shown in the top panel of Figure 9, the TCC method led to MSD values

that were smaller than that for the ICC and OCC methods. However, given the very small size of
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these differences, their impact was deemed negligible.

There was also a two-way interaction between calibration sample size and number of anchor

items used in the linking solution. This interaction is shown in the bottom panel of Figure 9.

When the sample size was large, the number of anchor items used to estimate linking constants

had little effect on the accuracy of the rescaled O. However, the MSD for el increased slightly in

the small sample size conditions, and these increases were mitigated as the number of anchor

items increased. When 5 anchor items were utilized, the difference in root MSD between sample

size conditions was equal to .013. This difference fell to .003 when 20 anchor items were used in

the linking process. Again, these differences were very small, and thought to have little practical

importance.

Discussion

Results from both the primary and secondary analyses suggested several convergent findings.

First, all the differences found among various linking conditions studied here were small. In

many cases, the differences were extremely tiny and thought to have little pragmatic implications.

This may be due to the fact that the simulated data fit the GPCM, and thus, reasonable parameter

estimates were obtained in all between-replication conditions. If accurate parameter estimates are

available, then linking parameters can be easily recovered and there is less opportunity for linking

methods to differ (Cohen & Kim, 1998). Nonetheless, when any new method is introduced, the

method must first be shown to work well in ideal situations before exploring its characteristics

under more realistic conditions. In this regard, the accuracy of linking achieved with methods that

have been generalized or created in this study was consistently reasonable.

Although all the effects discovered in the simulation were generally quite small, there were,
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nonetheless, consistent findings that emerged. As the calibration sample size increased, the

accuracy of the linking methods increased, and sensitivity to variables inherent in a specific linking

situation had little, if any, effect on the resulting scale transformation. Again, this was presumably

do to the fact that IRT item parameters were estimated very well with large samples. When one

has accurate item parameter estimates of anchor items in two groups, then finding the linear

transformation that relates the metrics of the two groups is relatively easy and can be

accomplished accurately using a variety of solution schemes.

When the calibration sample size was small, the accuracy of the linking procedure degraded

somewhat, and other factors began to affect the quality of the linking results ever so slightly. The

most important of the factors studied here was the number of anchor items used to estimate

linking constants. There was noticeable improvement in linking accuracy when the number of

anchor items was increased from 5 to 10 items in the small calibration condition. These

improvements attenuated once the number of linking items reached 15. The generality of this

result is no doubt highly dependent on the particular tests that are calibrated in the two

respondent groups. In our simulation study, the item pool consisted of all non-extreme 1998

NAEP items with 3 response categories. One could conjecture that between 10-15 anchor items

will be needed to achieve optimal linking results for similar item pools. Unfortunately,

determining the similarity between a given item pool and the one used in this study is fraught with

difficulty, and thus, further study is required before specific recommendations can be made.

There was also an effect of the linking scenario on the accuracy of estimated linking constants

when small calibration sample sizes were used. In this case, the scale constant estimated by the

linking procedure was more accurate when the distributions of the two respondent groups were
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identical. This suggests that achieving a common metric for item parameters may be more

difficult in vertical testing situations when the calibration sample size is small. Again, when the

sample size is large, then this issue is of little concern.

The type of characteristic curves used to develop linking estimates and the points at which the

curves are evaluated had systematic, but trivial effects on the accuracy of linking. The TCC

method generally produced linking results that were slightly more accurate then the ICC method,

which, in turn, produced slightly more accurate results when compared to the OCC method.

However, the impact of these differences will probably have negligible impact in practice.

Nonetheless, if one is forced to choose among these methods based only on the results of this

simulation, then the choice seems clear. The TCC method consistently provided equal or better

linking accuracy in every condition studied here. The choice between the type of evaluation

points to use is a bit less clear. Again, the effects of this variable were very small and of little

practical importance. However, evaluation of characteristic curve differences at 6 points usually

led to more accurate linking. The fact that this advantage was quite small may, itself, be

practically meaningful because linking is sometimes required in cases where there in no access to

(e.g., linking item parameters obtained from different published studies). In such cases, a

limited number of equally spaced evaluation points should suffice as long as the item parameters

are estimated well.

One of the primary contributions of this work was the introduction of alternative characteristic

curve methods that allow the practitioner to choose between a symmetric or asymmetric solution

regardless of the type of characteristic curve that is employed to link parameter estimates. The

simulation showed that use of a symmetric linking procedure generally led to equal or slightly
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better linking accuracy relative to an asymmetric procedure. Again, these differences were so

slight that they seemed trivial. We find the comparable accuracy of symmetric and asymmetric

solutions encouraging because we believe that the characteristics of the measurement situation

should determine the method used to link parameter estimates. It is comforting to know that this

choice can be made on substantive, rather than methodological, grounds with little, if any, impact

on linking accuracy.

As with any simulation study, the particular results that have emerged here require further

investigation before they can be adequately generalized. Future research should include an

assessment of the robustness of these linking methods in situations where the data are

systematically misfit by the GPCM or when the assumptions of the GPCM fail to hold (e.g., minor

deviations from unidimensionality and/or respondent independence). Perhaps further distinctions

among these linking strategies can be made under less ideal circumstances than those simulated

here. Future research should also explore how the number of response categories affects the

number of anchor items required to produce adequate linking accuracy.
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Table 1. Interpretable ANOVA effects on MSE for A.

Source dfden SS pa
2

11 FliF

N 1 396 .102 145.47 .0001 .249

LS 1 396 .017 24.53 .0001 .042

N*LS 1 396 .013 18.81 .0001 .032

A 3 1188 .047 59.41 .0001 .119

A*N 3 1188 .029 36.84 .0001 .074

CC 2 792 .001 14.06 .0001 .033

S*CC 2 792 .000 17.42 .0001 .039

S*CC*N 2 792 .000 14.80 .0001 .033

N=calibration sample size, LS= linking scenario, CC=characteristic curve method, S=symmetry of

solution, A=number of anchor items.

p-values for within-replication effects are adjusted with the Huynh-Feldt procedure.
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Table 2. Interpretable ANOVA effects on MSE for h

Source df,,, dfden SS F pa
2

111W

N 1 396 .027 119.09 .0001 .229

A 3 1188 .013 65.22 .0001 .133

A*N 3 1188 .006 28.79 .0001 .059

CC 2 792 .000 13.79 .0001 .033

CC*EP 4 1584 .000 16.72 .0001 .039

N=calibration sample size, A=number of anchor items, CC=characteristic curve method,

EP=nature of evaluation points.

a p-values for within-replication effects are adjusted with the Huynh-Feldt procedure.
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Table 3. Interpretable ANOVA effects on MSD for item parameter estimates.

Source Parameter dfn. dfden SS Pa
2

n WF

N 1; 1 396 1.413 640.16 .0001 .613

A 1; 3 1188 .038 88.96 .0001 .167

A*N 6 3 1188 .020 46.29 .0001 .087

A*EP 1; 6 2376 .000 11.92 .0002 .531

CC*S 1; 2 792 .000 23.49 .0001 .054

CC*S*EP 1; 4 1584 .000 24.96 .0001 .056

N a 1 396 2.229 877.88 .0001 .670

A a 3 1188 .046 67.79 .0001 .132

A*N a 3 1188 .032 46.86 .0001 .092

CC*S a 2 792 .000 30.56 .0001 .068

CC*S*N a 2 792 .000 24.45 .0001 .054

N d 1 396 7.582 426.79 .0001 .518

A a 3 1188 .042 33.51 .0001 .074

N=calibration sample size, A=number of anchor items, CC=characteristic curve method,

EP=nature of evaluation points, S=symmetry of solution.

a p-values for within-replication effects are adjusted with the Huynh-Feldt procedure.
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Table 4. Interpretable ANOVA effects on MSD for .

Source df, dfden SS pa
2

11 WF

LS 1 396 1.897 147.06 .0001 .265

A 3 1188 .101 90.31 .0001 .165

A*N 3 1188 .056 49.92 .0001 .091

CC 2 792 .001 19.04 .0001 .044

LSlinking scenario, CCcharacteristic curve method, A= number of anchor items, N= calibration

sample size .

' p-values for within-replication effects are adjusted with the Huynh-Feldt procedure.
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Figure Captions

Figure 1. Two-way interactions for the MSE of A. The top panel illustrates the calibration

sample size by number of anchor items interaction. The bottom panel illustrates the calibration

sample size by linking scenario interaction.

Figure 2. Three-way interaction of characteristic curve by symmetry of solution by calibration

sample size on the MSE of A.

Figure 3. Two-way interactions for the MSE of B. The top panel illustrates the calibration

sample size by number of anchor items interaction. The bottom panel depicts the characteristic

curve by nature of evaluation points interaction.

Figure 4. Two-way interactions for the MSD of S. The top panel illustrates the calibration

sample size by number of anchor items interaction. The bottom panel depicts the nature of

evaluation points by number of anchor items interaction.

Figure 5. Three-way interaction of characteristic curve by symmetry of the solution by nature of

evaluation points on the MSD of S.

Figure 6. Two-way interaction of calibration sample size by number of anchor items on the MSD

of cl.

Figure 7. Three-way interaction of characteristic curve by symmetry of the solution by calibration

sample size on the MSD of a.

Figure 8. Main effects for the MSD of d. The top panel illustrates the main effect of calibration

sample size. The bottom panel portrays the main effect of the number of anchor items.
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Figure 9. Interpretable effects for the MSD of 6 . The top panel illustrates the main effect of

characteristic curve. The bottom panel depicts the calibration sample size by number of anchor

items interaction.
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Figure 1

Calibration Sample Size x Number of Anchor Items
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Figure 2

Characteristic Curve x Symmetry x Calibration Sample Size
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Figure 6

Calibration Sample Size x Number of Anchor Items
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Figure 7

Characteristic Curve x Symmetry x Calibration Sample Size

0.022

0.020

0.018

0.016

0 0.014

C.-

0 0.012
u)
2

0.010

0.008

0.006

0.004

0.002

,44

,1

NJ
GJ

NJ
4NJ

NJ

I

N,

TT I I 00CCCCCCCCCCCC

V

TT I I 00CCCCCCCCCCCC
A S A S A S A S A S A S

300

47

Curve / Sym.

2000 I
Sample Size



Calibration Sample Size
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